
Crowd Environment and its
Knowledge Analysis (CEKA)

(Version 1.0)

Programming Guide

Jing Zhang

Bryce Nicolson

Victor S. Sheng

Xindong Wu

Southeast University, China
University of Central Arkansas, UAS

Hefei University of Technology, China

CEKA 1.0 Programing Guide

CEKA is a software package for developers and researchers to mine the wisdom of crowds. It

makes the entire knowledge discovery procedure much easier, including analyzing qualities of

workers, simulating labeling behaviors, inferring true class labels of instances, filtering and correcting

mislabeled instances (noise), building learning models and evaluating them. It integrates a set of

state-of-the-art inference algorithms, a set of general noise handling algorithms, and abundant

functions for model training and evaluation. CEKA is written in Java with core classes being

compatible with the well-known machine learning tool WEKA, which makes the utilization of the

functions in WEKA much easier.

Copyright (C) 2014 Jing Zhang, Victor S. Sheng, Bryce Nicolson, Xindong Wu.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if

not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

USA

CEKA 1.0 Programing Guide

Contents
1 SYSTEM OVERVIEW ... 1

1.1 Introduction ... 1
1.2 System Architecture .. 1

2 DEPLOY WITH ECLIPSE .. 3

2.1 Install Eclipse .. 3
2.2 Install and Configure CEKA .. 3
2.3 Cooperation with the Source Code of WEKA ... 5
2.4 Set up Your Own Project Based on CEKA.. 7
2.5 Overview of the Packages in CEKA ... 7

3 INPUT FILE FORMATS.. 10

3.1 Input Files.. 10
3.1.1 File “.gold.txt” .. 10
3.1.2 File “.response.txt” .. 11
3.1.3 File “.arff” ... 11
3.1.4 File “.arffx” ... 11

3.2 File Loading .. 12
3.3 File Saving .. 14

4 CORE CLASSES ... 16

4.1 Overview ... 16
4.1.1 Hierarchical structure of core classes ... 16
4.1.2 Brief descriptions of core classes .. 16

4.2 Class Dataset ... 17
4.2.1 Create an empty data set ... 17
4.2.2 Manipulation of the instances in a data set. .. 18
4.2.3 Other functions .. 19
4.2.4 Compatible with WEKA .. 19

4.3 Class Example ... 20
4.3.1 Create examples .. 20
4.3.2 Manipulation of different kinds of labels ... 20
4.3.3 Cooperation with WEKA ... 21

4.4 Classes MultiNoisyLabelSet and Label .. 22
4.4.1 Class MultiNoisyLabelSet ... 22
4.4.2 Class Label ... 22

4.5 Class Worker ... 23

5 INFERENCE ALGORITHMS .. 24

5.1 Common Function ... 24
5.2 Details of the Inference Algorithms ... 25

5.2.1 Definitions ... 25

CEKA 1.0 Programing Guide

5.2.2 Majority Voting .. 25
5.2.3 Dawid & Skene’s ... 26
5.2.4 GLAD .. 26
5.2.5 Raykar, Yu, et al. (RY) .. 27
5.2.6 ZenCrowd .. 28
5.2.7 KOS ... 28
5.2.8 PLAT ... 29
5.2.9 Adaptive Weighted Majority Voting (unpublished) .. 30
5.2.10 GTIC (unpublished) .. 30

6 NOISE HANDLING ALGORITHMS ... 32

6.1 Introduction ... 32
6.2 Noise Filtering ... 32

6.2.1 Class Filter .. 32
6.2.2 Classification Filtering ... 33
6.2.3 Majority Voting Filtering .. 34
6.2.4 Iterative Partitioning Filtering .. 34
6.2.5 Multiple Partitioning Filtering .. 35

6.3 Noise Correction ... 35
6.3.1 Self-Training Correction Algorithm .. 35
6.3.2 Polishing Labels Algorithm ... 37
6.3.3 Cluster Correction Algorithm (unpublished)... 37
6.3.4 Adaptive Voting Noise Correction (unpublished) .. 38

7 EVALUATION AND SIMULATION ... 40

7.1 Performance Measures ... 40
7.2 Package ceka.simulation .. 40

7.2.1 Class ExampleMask .. 41
7.2.2 Class ExampleWorkersMask ... 41
7.2.3 Simulation of workers ... 43

8 REFERENCES ... 45

CEKA 1.0 Programing Guide

1

1 System Overview

1.1 Introduction

The emergence of crowdsourcing (Howe, 2006) has changed the way of knowledge acquisition.

It has already attracted vast attentions of the machine learning and data mining research community

in the past several years. Researchers show great interests in utilizing crowdsourcing as a new

approach to acquire class labels of objects from common users, which costs much less than the

traditional way\textemdash annotating by domain experts. In order to improve the labeling quality, an

object usually obtains multiple labels from different non-expert annotators. Then, inference

algorithms will be introduced to estimate the ground truths of these objects. Many inference

algorithms have been proposed in recent years. Besides, building learning models from the inferred

crowdsourced data is another research issue with great challenges, which aims at lifting the quality

of a learned model to the level that can be achieved by training with the data labeled by domain

experts.

To facilitate the research on mining the wisdom of crowds, we develop a novel software

package named Crowd Environment and its Knowledge Analysis (CEKA).

1.2 System Architecture

The following figure illustrates the hierarchical architecture of CEKA, in which it is also

compared with the two other tools for crowdsourcing SQUARE (Sheshadri and Lease, 2013) and

BATC (Nguyen et al., 2013). Generally, SQUARE and BATC only provide some inference algorithms

and several simple analysis functions. By contrast, CEKA conceives a more ambitious blueprint. It

attempts to support the entire knowledge discovery procedure including analysis, inference and

model learning. In the data layer, CEKA is able to read an arff(x) file defined by WEKA, which

contains features of instances for subsequent model building. In the inference and learning layer, it

provide a large number of inference algorithms. Our on-going studies find that mislabeled instances

after inference can be effectively detected and corrected, if a noise (mislabeled instance) handling

algorithm can take advantage of the information generated in the previous inference procedure.

Thus, CEKA provides a batch of noise handling algorithms. The core classes in this layer are

derived from related classes in WEKA. In the application layer, CEKA provides a lot of utilities such

as calculating performance evaluation metrics (i.e., accuracy, recall, precision, F source, AUC,

M-AUC), manipulating data (i.e., shuffling, splitting and combining data), etc.

CEKA 1.0 Programing Guide

2

APIs

Data Converter, Laoder and Saver
Data Layer

Inference and Learning Layer
Ground Truth Inference
Algorithms

Application Layer

Analyzer

Learning for Crowdsourcing

Active
Learning
Algorithms

Class
Wrappers for
Learning with

WEKA

Noise Handling Algorithms

Noise Filtering

Noise Correction

response file gold file WEKA arff(x) file

MV, GLAD, DS,
RY, ZC, PLAT ...

Simulator Explorer Utilities

Data

implemented (also by
SQUARE and BATC)

implemented (only by
CEKA)

to implement in the
future

Info.

CEKA 1.0 Programing Guide

3

2 Deploy with Eclipse

2.1 Install Eclipse

Download and Install Eclipse
This guide demonstrates the installation on the Windows system. Since CEKA and Eclipse are

both written in Java, the installation on the Linux system is almost the same.

(1) Download Eclipse from: http://www.eclipse.org. Install it on the Windows system.

(2) For convenience in accessing the source code at sourceforge.net, we suggest that you

install SVN plugins in Eclipse. Run Eclipse, click menu “Help” -> “Eclipse Marketplace.”

Please install “Subversive –SVN Team Provider 2.0.” After that, the following SVN related

components will be installed in Eclipse. (Note that the SVN plugins are dependent on the

SVN client, which can be downloaded from http://tortoisesvn.net/ and should have been

installed before you install this plugin.)

2.2 Install and Configure CEKA

Check out CEKA
You can create a new Eclipse workspace to accommodate CEKA and your application based on

CEKA. In this guide, we create the workspace in the path E:\CekaSpace. We also use a variable

CEKASPACE to represent this path in this guide. You can download and Install CEKA through the

following steps.

http://www.eclipse.org/
http://tortoisesvn.net/

CEKA 1.0 Programing Guide

4

(1) Open Eclipse, click menu “File” -> “Switch Workspace” to switch workspace to CEKASPACE.

(2) Click menu “File” -> “Import.” In “Import” dialog box, select “Project from SVN.”

(3) The release version 1.0 of the CEKA is at:

https://svn.code.sf.net/p/ceka/code-0/branches/release1.0

If you are not the developer of CEKA, you need not fill the Authentication information on this

page. Then, click “Next.” On the page of “Check Out As,” you can specify a new name to

this project. For convenience, this guide use “Ceka.”

Configure CEKA
After CEKA is checked out, you should correctly set up the project by configuring its properties.

(1) Right-Click project Ceka in “Package Explorer” view. Select “Properties” then select “Java

Build Path.”

(2) “Source” Tab. Besides Ceka\src, we add Ceka\test as another source fold.

(3) “Libraries” Tab. Click “add JARs.” Select all JARs in “lib” directory. (Warning: DO NOT select

“GLAD.exe” and “log4j.properties.”).

https://svn.code.sf.net/p/ceka/code-0/branches/release1.0

CEKA 1.0 Programing Guide

5

Now Ceka has been correctly setup.

2.3 Cooperation with the Source Code of WEKA

In Section 2.2, CEKA is set up with the dependence of WEKA’s jar package which has no

source code provided. To encourage the users to cooperate with the source code of WEKA, we also

have an image of the source code of WEKA-3.6.10 at:

 https://svn.code.sf.net/p/ceka/code-0/tags/Weka-3.6.10

You can set up your project with the source code of WEKA as follows.
(1) Click menu “File” -> “Import.” In the “Import” dialog box, select “Project from SVN.”
(2) Import WEKA-3.6.10 at:

https://svn.code.sf.net/p/ceka/code-0/tags/Weka-3.6.10

https://svn.code.sf.net/p/ceka/code-0/tags/Weka-3.6.10
https://svn.code.sf.net/p/ceka/code-0/tags/Weka-3.6.10

CEKA 1.0 Programing Guide

6

If you are not the developer of CEKA, you need not fill out the Authentication information on

this page. Then, click “Next.” On the page of “Check Out As,” you can specify a new name

to this project. For convenience, this guide uses “Weka.”

Configure CEKA
After Weka is checked out, you should re-configure CEKA with the proper setups.

(1) Right-Click project Ceka in “Package Explorer” view. Select “Properties” then select “Java

Build Path.”

(2) “Libraries” Tab. Remove “weka.jar.”.

(3) “Projects” Tab. Add “Weka” project.

CEKA 1.0 Programing Guide

7

2.4 Set up Your Own Project Based on CEKA

It is very easy to create your own project that is willing to integrate CEKA. Click menu “File” ->

“New” -> “Java Project.” Create a new Java project (suppose it’s named MyCekaApp). Click “Next.”

On the page “Java Settings”:

(1) Add Projects “CEKA” and “Weka” into the dependent build path via “Project” tab page.

(2) Add all JARs in “Ceka\lib” except “weka.jar” (if you don’t include WEKA source code as

Section 2.3 describes, you must add weka.jar as well.) into the dependent build path via “Libraries”

tab page.

2.5 Overview of the Packages in CEKA

The following table describes the overview of the overview of the packages and directories in

CEKA 1.0 Programing Guide

8

CEKA. CEKA has a hierarchical package structure. In this table, we only provide main packages and

classify these packages (classes and directories included) according to their logical functions.

Components packages/classes description

ceka.consensus
(the ground
truth inference
algorithms)

ds

the Dawid & Skene’s algorithm
(Dawid and Skene, 1979), including
an implementation by (Ipeirotis et
al., 2010)

glad GLAD (Whitehill et al., 2009)

gtic
GTIC (unpublished), an algorithm
for multi-class inference.

kos KOS (Karger et al., 2011)
plat PLAT (Zhang et al., preprint)

square

including RY (Raykar et al., 2010)
and ZenCrowd (Demartini et al.,
2012) implemented by SQUARE
(Sheshadri and Lease, 2013)

MajorityVote.java Majority Voting

WeightedVote.java
Adaptive Weighted Voting for binary
imbalanced labeling (unpublished)

ceka.converters
FileLoader.java

a class for loading files to form a
data set

FileSaver.java a class for saving a data set to files

ceka.core
Dataset.java, Example.java,
Category.java,
….

This package contains the core
classes of CEKA. For details, refer
to Section 4.

ceka.noise
(noise handling
techniques for
crowdsourcing)

avnc
Adaptive Voting Noise Correction
for crowdsourcing (unpublished)

ClassificationFilter.java
ClassificationFiltering algorithm
(Gamberger et al., 1999)

IterativePartitionFilter.java
iterative partition filtering (IPF)
(Khoshgoftaar and Rebours, 2007)

MajorityFilter.java
voting filtering (Brodley and Friedl,
1999)

MultiplePartitioningFilter.java
multiple partitioning filtering
(Khoshgoftaar and Rebours, 2007)

SelfTrainCorrection.java
Self-training correction (STC)
(Triguero et al., 2014).

STCConfidence.java

Self-training correction (STC)
(Triguero et al., 2014) with
confidence parameter
(unpublished)

CEKA 1.0 Programing Guide

9

ceka.simulation

ExampleMask.java
ExampleWorkersMask.java
GaussianLabelingStrategy.java
SingleQualLabelingStrategy.java
…

classes used for simulating labeling
behaviors of workers.

ceka.utils
(utiltity
functions)

PerformanceStatistic.java
a class used for calculation of a set
of performance measures, such as
accuracy, precision, recall, AUC,…

DatasetManipulator.java a class for data set manipulation

Misc.java
a lot of useful functions for
programming.

com.ipeirotis.gal ----
Dawid & Skene’s algorithm
implementation by (Ipeirotis et al.,
2010)

mloss.roc ---- code to compute ROC and AUC

org.square.qa ----
code implemented by SQUARE
(Sheshadri and Lease, 2013)

Ceka/lib
(directory) ----

all dependent JARs for CEKA
GLAD.exe
log4j.proporties

Ceka/data
(dirrectory)

real-world the real-world data sets
synthetic the synthetic data sets

CEKA 1.0 Programing Guide

10

3 Input File Formats

3.1 Input Files

The current version (1.0) of CEKA accepts four kinds of text files as its input files. The extension

names of these four kinds of files are “.gold.txt,” “.response.txt,” “.arff,” and “.arffx.” The common

name of these files defines a name of a data set. It means that a data set exists in the disk as

several related files with the same common name. For example, a data set named “leaves” may

include three input files “leaves.gold.txt,” “leaves.response.txt,” and “leaves.arff.”

3.1.1 File “.gold.txt”

A file with the extension name “.gold.txt” defines the ground truth of all instances in a data set,

which is used for evaluation of an algorithm performance. Each line in this file defines an instance

and the true label of this instance with the format as:

INSTANCE-ID0x09TRUELABEL0x0D0x0A

INSTANCE-ID is a string that can be treated as a unique name of an instance.

TRUELABEL is the true label of this instance, which is an integer string that ranges from “0” to

the maximum number of classes. This class identification MUST be consecutive integer starting

from “0.”

0x09 is a delimiter whose ASCII code is 0x09, known as “Tab” (\t).

0x0D0x0A or 0x0A is a line feed, known as “\r\n” or ”\n.”

Example: a segment of a binary labeling “.gold.txt” file

0 0
1 0
2 1
3 0
4 1
5 0
6 1
7 0
8 0
9 0

CEKA 1.0 Programing Guide

11

3.1.2 File “.response.txt”

A file with the extension name “.reponse.txt” defines all labels obtained from the annotators in a

data set, which is the labeling information of crowdsourced data. Each line in this file defines a label

assigned to an instance provided by an annotator with the following format:

WORKER-ID0x09INSTANCE-ID0x09LABEL0x0D0x0A

WORKER-ID is a string that can be treated as a unique name of a worker.

INSTANCE-ID is a string that can be treated as a unique name of an instance.

LABEL is the label of this instance provided by this annotator, which is an integer string that

ranges from “0” to the maximum number of classes. This class identification MUST be a consecutive

integer starting from “0.”

0x09 is a delimiter whose ASCII code is 0x09, known as “Tab” (\t).

0x0D0x0A or 0x0A is a line feed, known as “\r\n” or ”\n”.

Example: a segment of a binary labeling “.response.txt” file

12 164 1
13 164 0
16 164 0
19 164 1
24 164 0
0 130 1
2 130 1
3 130 1

3.1.3 File “.arff”

A file with the extension name “.arff” is a data set file defined by WEKA, which provides both

features and true labels of each instance in the data set. More details about “.arff” file can be found

at http://weka.wikispaces.com/ARFF.

3.1.4 File “.arffx”

A file with the extension name “.arffx” is a data set file defined by CEKA to extend the “.arff” file

in WEKA. In “.arff” file, all instances in a data set listed in this file only have their features and true

labels but no identities. However, in crowdsourcing, we sometime need to know which instance is

labeled by which annotators. Thus, we extend the “.arff” file type by adding a list at the end of the file

which specifies the ID of each instance. In this file, the section “@DATA” of a “.arrfx” file and the

http://weka.wikispaces.com/ARFF

CEKA 1.0 Programing Guide

12

section “@ID-MAP” contains the same number of lines. For each line (instance) in the section

“@DATA,” we will specify its ID in the corresponding line in the section “@ID-MAP.”

Example: a segment of a “.arff” file

[the headers of arff file are omited]

@DATA
Some-college,10,Divorced,Tech-support,Own-child,White,40,US,0
Some-college,10,Divorced,Handlers-cleaners,Not-in-family,Amer-Indian-Eskimo,84,US,0
HS-grad,9,Married-civ-spouse,Farming-fishing,Husband,Asian-Pac-Islander,40,Cambodia,1
HS-grad,9,Never-married,Exec-managerial,Not-in-family,White,40,US,0
Masters,14,Married-civ-spouse,Exec-managerial,Wife,White,50,U-S,1

@ID-MAP
50
51
52
60
61

In this example, five instances listed in the section “@DATA” will have the IDs “50,” “51,”

“52,”“60” and “61,” respectively.

3.2 File Loading

The class FileLoader in the package ceka.converters is responsible for loading the data

from different kinds of input files to create the class Dataset. (Note: the details of the class

Dataset are in Section 4.)

The main public functions of FileLoader are listed below.

Function

Dataset loadFile(String responsePath, String goldPath)

throws Exception

comments: the returned Dataset doesn’t contain any features

Parameters
String responsePath the path of the “.response.txt” file

String goldPath the path of the “.gold.txt” file

Return Dataset the Dataset created form two files

Function

Dataset loadFile(String responsePath, String goldPath,

String arffxPath) throws Exception

comments: the returned Dataset that contains features

Parameters String responsePath the path of the “.response.txt” file

CEKA 1.0 Programing Guide

13

String goldPath the path of the “.gold.txt” file

String arffxPath the path of the “.arffx” file

Return Dataset the Dataset created form two files

Function

Dataset loadFileX(String responsePath, String goldPath,

String arffxPath) throws Exception

comments: the returned Dataset that contains features

NOTE: if goldPath is null, then the true labels of instances will be set to the

values in arffxPath, otherwise, they will be set to the values in goldPath.

Parameters

String responsePath the path of the “.response.txt” file

String goldPath the path of the “.gold.txt” file

String arffxPath the path of the “.arffx” file

Return Dataset the Dataset created form three files

Function

Dataset loadFile(String responsePath, String goldPath,

String arffPath) throws Exception

comments: the returned Dataset that contains features

NOTE: (1) If goldPath is null, then the true labels of instances will be set to

the values in arffPath, otherwise, they will be set to the values in

goldPath.

(2) The IDs of all instances automatically start from 0 to the maximum

number of instances.

Parameters

String responsePath the path of the “.response.txt” file

String goldPath the path of the “.gold.txt” file

String arffPath the path of the “.arff” file

Return Dataset the Dataset created form three files

Example: read files to form a Dataset object

String responsePath = "E:/CekaSpace/Ceka/data/income94.response.txt";
String goldPath = "E:/CekaSpace/Ceka/data/income94.gold.txt";
String arffPath = "D:/CekaSpace/Ceka/data/Income94.arff";
Dataset dataset = FileLoader.loadFile(responsePath, goldPath,
arffPath);

CEKA 1.0 Programing Guide

14

3.3 File Saving

The class FileSaver in the package ceka.converters is responsible for saving a Dataset

object to several kinds of files mentioned above.

The main public functions of FileSaver are listed below.

Function

void saveDataset(Dataset dataset, String responsePath,

String goldPath) throws IOException

comments: save a data set into “.response.txt” and “.gold.txt” files

Parameters

Dataset dataset the dataset to be saved

String responsePath the path of the “.response.txt” file

String goldPath the path of the “.gold.txt” file

Return void

Function

void saveDatasetArff(Dataset dataset, String arffPath)

throws Exception

comments: save a data set to an arff file

Parameters
Dataset dataset the dataset to be saved

String arffPath the path of the “.arff” file

Return void

Function

void saveDatasetArffx(Dataset dataset, String arffxPath)

throws Exception

comments: save a data set to an arffx file

Parameters
Dataset dataset the dataset to be saved

String arffxPath the path of the “.arffx” file

Return void

Function

void saveDatasetResponseArffx(Dataset dataset, String

responsePath, String goldPath, String arffxPath,

ExampleWorkersMask mask) throws Exception

Comments: save a Dataset object into “.response.txt,” “.gold.txt,” and “arffx”

files. When saving the data set, an object of ExampleWorkersMask is used

to determine whether a labeler that assigns label to an instance needs to be

stored into the “.response.txt” file. That is, the ExampleWorkersMask object

CEKA 1.0 Programing Guide

15

acts as a filter. For more information about the class

ExampleWorkersMask, refer to Section 7.

NOTE: this function is used to create different data sets from a basic one.

Parameters

Dataset dataset the dataset to be saved

String responsePath the path of the “.response.txt” file

String goldPath the path of the “.gold.txt” file

String arffxPath the path of the “.arffx” file

ExampleWorkersMask

mask

a mask for filtering workers according to some

rules. See Section 7.

Return void

Function

saveDatasetResponseArffx(Dataset dataset, String

responsePath, String goldPath, String arffxPath,

ExampleMask mask)

Comments: save a Dataset object into “.response.txt,” “.gold.txt,” and “arffx”

files. When saving the data set, an object of ExampleMask is used to

determine whether an instance needs to be stored into the “.response.txt,”

“.gold” and “.arffx” files. That is, ExampleMask object is served as a filter to

instances. For more information about the class ExampleMask, refer to

Section 7.

NOTE: this function is used to create different data sets from a basic one.

Parameters

Dataset dataset the dataset to be saved

String responsePath the path of the “.response.txt” file

String goldPath the path of the “.gold.txt” file

String arffxPath the path of the “.arffx” file

ExampleMask mask a mask for filtering instances according to some

rules. See Section 7.

Return void

CEKA 1.0 Programing Guide

16

4 Core Classes

4.1 Overview

This section first describes the hierarchical structure of core classes. Then, the details of every

class are provided with some example code.

4.1.1 Hierarchical structure of core classes

The core classes of CEKA are directly derived from the real-world objects in crowdsourcing.

The following figure describes the hierarchical structure of these core classes.

Dataset

Category Category Example Example Worker Worker...

Label MultiNoisyLabelSetCategory Category... MultiNoisyLabelSet

Label Label...

4.1.2 Brief descriptions of core classes

 Dataset

Dataset is a class that contains the crowdsourced data read from the files. Dataset is a

subclass of class weka.Instances.

Class Dataset consists of multiple objects of classes Category, Example and Worker.

 Category

Category is a class that describes the concept of class in machine learning.

Class Category consists of a name, an integer that starts from 0 and identifies a class, and a

probability of this class.

For example, for a binary data set, the object of class Dataset contains two objects of class

Category. One stands for class 0 and the other stands for class1. Both of them have the same

CEKA 1.0 Programing Guide

17

name, Label.DEFAULT_LABEL_NAME. The name of a Category or Label is for multi-label

extension, which is used for identifying different class labels. For single-label, the name is

always Label.DEFAULT_LABEL_NAME.

 Example

Example is a class that stands for an instance in a data set. Example is a subclass of class

weka.Instance. The features of an instance are held by its superclass weka.Instance.

Class Example consists of multiple objects of classes Category, an object of class Label

which represents the true label of this example, and an object of class

MultiNoisyLabelSet.

 Worker

Worker is a class that stands for an annotator in a crowdsourcing system.

Class Worker consists of an object of class MultiNoisyLabelSet that represents all labels

given by this worker.

 Label

Label is a class that describes the concept of class label in machine learning.

Class Label consists of a name and an integer that starts from 0 and identifies a class. A label

is associated with a worker ID and an example ID, which stands for the worker (ID) giving this

label to the example (ID).

The name of a Label is for multi-label extension, which is used for identifying different class

labels. For single-label, the name is always Label.DEFAULT_LABEL_NAME.

 MultiNoisyLabelSet

MultiNoisyLabelSet is a class that describes a set of multiple objects of the class Label.

Class MultiNoisyLabelSet consists of a list of objects of the class Label and a single

object of the class Label which is called intergatedLabel. An intergatedLabel is the

label that is inferred from the current data set.

The name of a Label is for multi-label extension, which is used for identifying different class

labels. For single-label, the name is always Label.DEFAULT_LABEL_NAME.

4.2 Class Dataset

4.2.1 Create an empty data set

Besides creating an object of the class dataset from the “.response.txt,” “.gold.txt,” “.arff” and

“.arffx” files as described in Section 3, sometimes we may want to create an empty data set that

contains no instances. We can use the following code to do it.

CEKA 1.0 Programing Guide

18

If we want to create an empty data set based on our current data set, which means the meta

data (descriptions) of the attributes of our current data set will be inherited by the newly created one,

we can use the following code.

4.2.2 Manipulation of the instances in a data set.

After an empty data set is created, we can add instances into this data set by using the following

function.

Function

void addExample(Example e)

Note: when adding an instance into a data set, always call this function, DO

NOT call weka.add(Instance) function.

Parameter Example e an instance to be add into this data set

Return void

Class Dataset provides the following functions for users to query instances in it.

Function

Example getExampleByIndex(int index)

Comments: the instances in a data set are arranged as a list. Using the index

of a position can retrieve that instance.

Parameter int index the index of the position that holds the instance

Return Example Queried example

Function
Example getExampleById(String id)

comments: retrieve an instance by using an ID

Parameters String id the ID of the instance to be retrieved

Return Example Queried example

Example: traversing all instances in a data set

/*dataset is an object of class Dataset*/
for (int i = 0; i < dataset.getExampleSize(); i++) {
 Example e = dataset.getExampleByIndex(i);}

/*baseDataset is an existing data set*/
Dataset dataset = new Dataset (baseDataset, 0);

String datasetName = “…”;
Dataset dataset = new Dataset (datasetName, null, 0);

CEKA 1.0 Programing Guide

19

4.2.3 Other functions

Example: traversing all workers in a data set

An object of class worker in a data set can also be retrieved by its ID using function

getWokersById(String id).

Example: traversing all categories in a data set

In some machine learning algorithms, randomization operations should be applied to a data set.

We can use the following function to shuffle all instances in a data set.

Function
void randomize(Random random)

Comments: randomly shuffle all instances in a data set

Parameter Random random the object of the class Random (in Java)

Return void

4.2.4 Compatible with WEKA

Since class Dataset is a subclass of weka.Instances, it can be directly passed as a

parameter to the related classes in Weka. The following code is an example of training a model.

/*dataset is an object of class Dataset*/
for (int i = 0; i < dataset.getWorkerSize(); i++) {
 Worker w = dataset.getWorkerByIndex(i);
}

/*dataset is an object of class Dataset*/
for (int i = 0; i < dataset.getCategorySize(); i++) {
 Category c = dataset. getCategory(i);
}

/*dataset is an object of class Dataset*/
Classifier smo = new weka.classifiers.functions.SMO();
smo. buildClassifier(dataset);

CEKA 1.0 Programing Guide

20

4.3 Class Example

4.3.1 Create examples

In this document, the terms example and instance are equivalent. Since the class Example is a

subclass of weka.Instance, many constructors of Example must be compatible with the

constructors of weka.Instance, such as Example(weka.core.Instance instance) and

Example(weka.core.Instance instance, String idStr), which accept another base

object of weka.Instance to create a new one. The meta information of attributes will be inherited

by the newly created object. However, sometimes we only want to do ground truth inference instead

of model learning. Under this circumstance, no features of an example will be provided. We can use

the following function to create an example without features by setting the first parameter to 1.

Function

Example(int numAttributes, String id)

Comments: create an example by setting its number of attributes and id.

If numAttributes is set to 1, the example will be created with only one attribute

that is the true label.

Parameters
int numAttributes the number of attributes, must great than 0

String id the ID of this example

We also can create a new example that contains the same content as the other does by calling

the function copy.

Function

Example copy()

Comments: the newly created example has the same set of categories, true

label and multiple noisy label set as the original one has.

Return Example the new example

Compared with the weka.Instance, the object of class Example has a unique identity which

is set during the creation of the object and can be retrieved by the function getId().

4.3.2 Manipulation of different kinds of labels

Each example has a true label that is provided by the oracle (expert with a perfect correct rate)

used for evaluating the performance of algorithms. The true label can be retrieved and set by the

functions Label getTrueLabel() and void setTrueLabel(Label l). (Note: the current

version of CEKA is only for single-label application; for multi-label application, there will be multiple

true labels. In this document, we only focus on the single-label issue.)

CEKA 1.0 Programing Guide

21

Each example has an integrated label which is the label inferred by an inference algorithm.

Class Example provides the following functions to get and set the integrated label.

Function

Label getIntegratedLabel()

Note: the integrated label is set automatically by an inference algorithm

described in Section 5.

Return Label integrated label

Function

void setIntegratedLabel(Label label)

Comments: if the example already has an integrated label, calling this

function will overwrite the original one.

Parameter Label the new integrated label

Return Example Queried example

Example: retrieve all noisy labels assigned to an example

Sometimes we need to retrieve a specific noisy label provided by the identity of an annotator.

We can use the following function.

Function
Label getNoisyLabelByWorkerId(String wId)

Parameter String wId identity of a worker

Return Label the label assigned by this worker

4.3.3 Cooperation with WEKA

Suppose a new inference algorithm is designed by a user of CEKA. After inference, each

example will be assigned an integrated label by calling function setIntegratedLabel(Label

label). Then the data set will be used to train a model by WEKA. Since WEKA does not call

function getIntegratedLabel(), we must call function void

assignIntegeratedLabel2WekaInstanceClassValue() before we train model. The value of

the label used in train also can be retrieved by the function getTrainingLabel().

/*example is an object of class Example*/
MultiNoisyLabelSet mnls = example.getMultipleNoisyLabelSet(0);
for (int i = 0; i < mnls.getLabelSetSize(); i++) {
 Label label = mnls.getLabel(i);
}

CEKA 1.0 Programing Guide

22

Since class Example is a subclass of weka.Instance, it can be directly passed as a

parameter to the related classes in Weka. The following code is an example of training a model and

predicting the class of an instance.

4.4 Classes MultiNoisyLabelSet and Label

4.4.1 Class MultiNoisyLabelSet

Class MultiNoisyLabelSet is a simple container that holds a set of labels. Actually, each

integrated label is associated with a MultiNoisyLabelSet because we deem that the integrated

label is derived from a MultiNoisyLabelSet. The integrated label can be obtained by calling the

following function.

Function

Label getIntegratedLabel()

Comments: get the integrated label associated with this multiple noisy label

set.

Return Label the integrated label

The following sample code shows how to retrieve all labels in a multiple noisy label set.

4.4.2 Class Label

Class Label is associated with an integer which is in the range from 0 to the maximum number

of categories in the crowdsourced data. For example, for binary labeling, the maximum number of

categories is 2. One can use the function getValue() to get this value and use the function

setValue() to set this value.

An object of the class Label can be created by calling the following constructor.

/* mnls is an object of class MultiNoisyLabelSet */
for (int i = 0; i < mnls.getLabelSetSize(); i++) {
 Label label = mnls.getLabel(i);
}

/*dataset is an object of class Dataset*/
Classifier smo = new weka.classifiers.functions.SMO();
smo. buildClassifier(dataset);
/*testExample is an object of class Example*/
double predict = smo.classifyInstance(testExample);

CEKA 1.0 Programing Guide

23

Function

Label(String name, String value, String exampleId, String

workerId)

Comments: create an object of the class Label

for the single-label issue, the name of a label is always

Label.DEFAULT_LABEL_NAME

Parameters

String name the name of the label

String value the class value of this label

String exampleId the example ID that this label is associated with

String workerId the worker ID that this label is associated with

4.5 Class Worker

Class Worker represents an annotator in the crowdsourcing system which has a unique ID.

The ID of a worker is set when the object is created and can be retrieved by calling the function

getId(). The class Worker provides the following functions.

Function
void addNoisyLabel(Label label)

Comment: add a noisy label to the multiple noisy label set of this worker

Parameter Label label the noisy label to add

Return void

Function

MultiNoisyLabelSet getMultipleNoisyLabelSet(int index)

Comments: get the multiple noisy label set of this index

Currently, the parameter index must be set to 0.

Parameter int index the index of a multiple noisy label set, must be 0

Return MultiNoisyLabelSet the multiple noisy label set retrieved

CEKA 1.0 Programing Guide

24

5 Inference Algorithms

5.1 Common Function

CEKA focuses on the agnostic inference algorithms, which require no additional prior

knowledge expect for the labels provided by annotators. To simplify the usage of these inference

algorithms, CEKA provides a very simple uniform function to conduct inference as follows.

Function

void doInference(Dataset data)

Comments: after calling the function, the integrated labels of all instances in

the data set are set.

Parameter Dataset data the data set to be inferred

Return void

Every inference algorithm has a name. The following sample code shows how to create

different inference algorithms and conduct an inference task.

String consensusName = “…”;
if (consensusName.equals(MajorityVote.NAME)) {
 MajorityVote mv = new MajorityVote();
 mv.doInference(dataset);}
if (consensusName.equals(GLADWraper.NAME)) {
 GLADWraper glad = new GLADWraper(tempDir, gladExePath);
 glad.doInference(trainSet);}
if (consensusName.equals(SquareIntegration.methodZenCrowd)) {
 SquareIntegration si = new SquareIntegration(tempDir);
 si.doInference(trainSet, SquareIntegration.methodZenCrowd);}
if (consensusName.equals(SquareIntegration.methodRYBinary)) {
 SquareIntegration si = new SquareIntegration(tempDir);
 si.doInference(trainSet, SquareIntegration.methodRYBinary);}
if (consensusName.equals(DawidSkene.NAME)) {
 DawidSkene ds = new DawidSkene(50);
 ds.doInference(trainSet);}
if (consensusName.equals(GalDawidSkene.NAME)) {
 GalDawidSkene ds = new GalDawidSkene(tempDir);
 ds.doInference(trainSet);}
if (consensusName.equals(KOS.NAME)) {
 KOS kos = new KOS(10);
 kos.doInference(trainSet);}

CEKA 1.0 Programing Guide

25

5.2 Details of the Inference Algorithms

5.2.1 Definitions

In a crowdsourcing system, the set of examples is denoted by 1{ }I
i iE e == , where ,i i ie x y=< > , ix is

the feature portion and iy is the true label of the example. The set of annotators is denoted by

1{ }J
j jU u == . Each label belongs to a set of classes 1{ }K

k kC c == . For convenience, we can use the index

as the identity of an annotator, an example and a class, saying an annotator j, an example i and a

class k. Since we focus on binary labeling problems, we map c1 (k=1) and c2 (k=2) to the negative (-)

and the positive (+) classes, respectively.

Each example i is associates with a multiple noisy label set 1{ }J
i ij jl l ==

 , where every element lij

comes from the annotator j. All labels of the examples in the dataset form a

matrix 1 2{ } , { ,0, }I
i i i ijL l l c c== ∈

, where 0 means that the annotator does not provide any label for that

example. Each annotator j is associated with a matrix () (){ }, 1j j
ikn n i I= ≤ ≤ and 1 k K≤ ≤ . Every

element inside the matrix presents the number of times that the annotator j labels the example i as

class k. In practice, each annotator labels an object at most once, that is, () {0,1}j
ikn ∈ . We also define

the priori probabilities of negative and positive classes as p– and p+.

The goal is to estimate the gold standards siy that maximizes ()

1
, given ,

I

i i i
i

y y L y
=

=∑I , where

1 2(,)iy c c∈ and I is the indicator function which outputs 1 when the test condition is satisfied;

otherwise it outputs 0.

5.2.2 Majority Voting

Majority Voting is the simplest inference algorithm. For each example, its integrated label has

the class with the maximum labels belonging to it. That is,

()

1
arg max { (),1 }

J
i

k ij k
j

c l c k K
=

= = ≤ ≤∑I

If multiple classes have the same number of members, the class of the integrated label will be

randomly chosen from them.

CEKA 1.0 Programing Guide

26

5.2.3 Dawid & Skene’s

Dawid & Skene’s algorithm (DS) (Dawid and Skene, 1979) was proposed by Dawid and Skene

in 1979. Itmodels annotators by using confusion matrices in multi-class medical diagnoses. One

confusion matrix presents one annotator. The element ()j
klπ of the confusion matrix of the annotator j

is the probability of labeling examples with true class k to class l.
E-step: DS estimates the probabilities of each example i belonging to class k by using the

following equation:

()

1 1

()

1 1 1

() ()
(|)

() ()

j
il

j
il

J K
nj

kl k
J l

ki J KK
nj

ql q
q j l

P c
P y c L

P c

π

π

= =

= = =

= =
∏∏

∑∏∏

M-step: DS updates the confusion matrix of every annotator and the priori probabilities of all

classes.

() () ()

1 1 1
() / ()

I K Ij j j
kl k il k ili i

i l i
y c n y c nπ

= = =

= = =∑ ∑∑I I

1
() () /

I

k ki
i

P c y c I
=

= =∑I

Because DS is an EM algorithm, when calling the constructor of the object of class

DawidSkene we must specify an integer designating the maximum iterations of EM procedures.

5.2.4 GLAD

GLAD (Whitehill et al., 2009) was proposed to model the expertise of each annotator (αj∈(-∞,

+∞)) and the difficulty level of each example (1/βi∈[0, +∞)). To estimate the labeling probability of

an annotator j on an example i, GLAD uses the following logistic model.

(| ,) 1 / (1)j i
ij i j iP l y e α βα β −= = +

E-step: GLAD computes the posterior probabilities of both negative and positive classes of all

examples given the values of two parameters (α, β) from the last M-Step and the observed labels.

(| ,)iP y L ,= + α β = ,(|)ii iP y l ,β= +

α ∝
1

() (| , ,)
J

i ij i j i
j

P y p l y α β
=

= + = +∏

M-step: GLAD maximizes the standard auxiliary function Q and updates the values of two

parameters (α, β) by using a gradient descent algorithm as follows.

1 1

(,) [ln (, | ,)] [ln (() (| , ,))]
I J

i ij i j i
i j

Q E P L Y E P y P l y α β
= =

= = = + = +∏ ∏α β α β

The original implementation of GLAD only runs on Linux systems, so we have transplanted it on

the Windows system. It can be found in directory Ceka\lib.

CEKA 1.0 Programing Guide

27

5.2.5 Raykar, Yu, et al. (RY)

RY (Raykar et al., 2010) was proposed to model the sensitivity (αj) and the specificity (βj) of an

annotator j. In the case of binary labeling, the sensitivity defines the bias toward the positive class

and the specificity defines the bias toward the negative class. RY uses a classifier to predict labels,

but this classifier requires a feature representation of examples. In our study, we ignore this

classifier.

RY uses a Bayesian approach to estimate the prior probabilities of the parameters (αj, βj) and

the positive class:

(| ,) (| ,)

(| ,) (| ,)

(| ,) (| ,)

j j j j j j

j j j j j j

P a a Beta a a

P b b Beta b b

P p n n Beta p n n

α α

β β

+ − + −

+ − + −

+ + − + + −

=

=

=

where ja+ and ja− are the number of positive labels and negative labels, respectively, provided by

the annotator j to the positive class inferred at this moment, jb+ and jb− are the number of positive

labels and negative labels, respectively, provided by the annotator j to the negative class inferred at

this moment, n+ and n− are the total number of positive and negative labels, respectively, provided by

all annotators to all examples. Beta is a beta probability distribution function.

E-step: RY computes the probability of each example i belonging to the positive class as

follows.

(| , , , ,)i i iP y x L pµ α β += = + ∝
(1)

i

i i

p a
p a p b

+

+ ++ −

where,
() ()

1

() (1)ij ij
J

L L
i j j

j

a α α= + = −

=

= −∏ I I , () ()

1

() (1)ij ij
J

L L
i j j

j

b β β= − = +

=

= −∏ I I

M-step: RY updates the parameters and the prior probability of the positive class as follows:

1

1

1

2

I
j i iji

j I
j j ii

a L

a a

µ
α

µ

+
=

+ −
=

− +
=

+ − −
∑

∑

1

1

1 (1)(1)

2 (1)

I
j i iji

j I
j j ii

b L

b b

µ
β

µ

+
=

+ −
=

− + − −
=

− − + −
∑

∑

1
1 / (2)

I

i
i

p n n n Iµ+ + + −

=

= − + − − +∑

The RY algorithm is implemented by SQUARE (Sheshadri and Lease, 2013); we have

integrated its code in a class called SquareIntegration. When inferring the ground truth, we

must specify the name of an algorithm SquareIntegration.methodRYBinary if we want to use

CEKA 1.0 Programing Guide

28

it.

5.2.6 ZenCrowd

ZenCrowd (Demartini et al., 2012) only uses a binary parameter {good, bad} to model the

reliability of an annotator. It is a little more complex than MV, but simpler than the other methods

above. It is used for tackling the problem of entity linking for large collections of online pages.

E-step: ZenCrowd calculates the reliability of each annotator which is defined as:

1 1 1
() () /

I K I

j ij iki
i k i

P u reliable L y n
= = =

= = =∑ ∑∑I

M-step: ZenCrowd uses reliabilities of annotators to update the probability of an example

belonging to a specific class.

()

1

()

1 1

[()]
()

[()]

ki

ki

J
y c

j
j

i k wK
y c

j
k k

P u reliable
P y c

P u reliable

=

=

=

= =

=
= =

=

∏

∑∏

I

I

The ZenCrowd algorithm is implemented by SQUARE (Sheshadri and Lease, 2013); we have

integrated its code in a class called SquareIntegration. When inferring the ground truth, we

must specify the name of an algorithm SquareIntegration.methodZenCrowd if we want to use

it.

5.2.7 KOS

KOS (Karger, Oh, and Shah, 2011) was motivated by the reality of differences in labeling quality

among different labelers. The authors sought to infer what they call the “correct answers” to “tasks,”

analogous to the ground-truth labels of examples. Their algorithm operates under the paradigm of

two types of messages—task messages and worker messages—that dependently update

themselves iteratively. It represents workers and the tasks they are assigned in the form of a graph

of worker nodes and task nodes where, say, node w is connected to node t if worker w is assigned

task t. The messages are essentially quantitative commentaries on the quality of each worker and

String consensusName = “…”;
if (consensusName.equals(SquareIntegration.methodZenCrowd)) {
 SquareIntegration si = new SquareIntegration(tempDir);
 si.doInference(trainSet, SquareIntegration.methodZenCrowd);}
if (consensusName.equals(SquareIntegration.methodRYBinary)) {
 SquareIntegration si = new SquareIntegration(tempDir);
 si.doInference(trainSet, SquareIntegration.methodRYBinary);}

CEKA 1.0 Programing Guide

29

each task. Using the information from the graph, the messages self-update kmax times, and then use

the final task messages to infer the correct values for each task.

5.2.8 PLAT

PLAT (Zhang et al., preprint) was proposed to handle the imbalanced labeling issue. The basic

principle of the PLAT algorithm is as follows. When using MV for label integration, as long as a half

of the labels above in the multiple label set of an example are negative, we make the decision that

the example is negative; otherwise it is positive, which means the decision boundary is 0.5 implicitly.

However, when labeling is imbalanced, 0.5 shouldn’t be treated as the appropriate decision

boundary any more. Supposing that labelers have the tendency to provided negative labels, the

decision boundary should move towards 0 (< 0.5). Therefore, PLAT achieves the goal of increasing

the number of positive examples in the training set by dynamically estimating a deterministic

threshold T for label integration.

In PLAT, the threshold T is concretized as a certain frequency of positive labels (denoted by f+)

in a multiple label set. PLAT first calculates the f+ value of each multiple label set, and then groups

the examples with (almost) the same f+ values together. Under the imbalanced labeling, the labeling

qualities on two classes (pP and pN) are different. Given an example where the true label is positive,

the number of positive labels (k) obeys a binomial distribution b(k; R, pP), where R is the size of the

multiple noisy label set. Similarly, for a true negative example, the number of positive labels (k) also

obeys a binomial distribution b(k; R, 1-pN). PLAT introduces a heuristic procedure

EstimateThresholdPosition to estimate the optimal threshold T. EstimateThresholdPosition analyzes

the distribution of the positive labels of all samples and obtains the estimation (denoted by t) of the

threshold T. This procedure is illustrated in the following figure, which shows the Positive Frequency

Distribution (PFD) curve of examples. If there exist two peaks in the PFD curve, T is the x-axis value

of the valley between the two peaks (as diamond-marked line). Otherwise, there only exists one

peak (as asterisk-marked line) in the PFD curve, and then T is the x-axis value of this unique peak.

0 0.2 0.4 0.6 0.8 1

500

1000

1500

2000

Proportion of positive labels (+)

N
um

be
r o

f e
xa

m
pl

es

p=0.70
p=0.55

peak1 peak2

peak

valley

T

the mushroom dateset
(+)2678 (-)3008

CEKA 1.0 Programing Guide

30

After T is estimated as t, PLAT induces the integrated label from the multiple label set of each

instance in the training set based on the threshold T. The examples with f+ > t are assigned an

integrated positive label. For those examples with f+ ≤ t, they may be assigned integrated negative

labels at a very high probability. During this procedure, PLAT tries to keep the ratio of the numbers of

integrated positive and negative examples close to the true underlying class distribution of the

training set. Note that the true underlying class distribution is unknown; it is estimated in the former

procedure EstimateThresholdPosition.

5.2.9 Adaptive Weighted Majority Voting (unpublished)

Adaptive Weighted Majority Voting (AWMV) is proposed to handle the imbalanced labeling

issue. It is very similar to the PLAT algorithm (Zhang et al. preprint).

In MV, we implicitly assume that a negative label has the same weight as a positive label. Here we

state that each weight is 0.5, so that the summation of the two weights is 1. Under biased labeling

circumstances, we can set a Bias Rate r to adjust the weights for two classes as follows.

(1)*0.5
, 0 r 1

1
N

P N

w r
w w

= −
≤ ≤ = −

In AWMV algorithm, the bias rate r is defined as:

2

2

8 4 1, [0, 0.25]
8 4 , (0.25, 0.5]

T T T

T T T

f f f
r

f f f
+ + +

+ + +

 − + ∈=
− + ∈

Where Tf+ is the Threshold of Positive Label Frequency () which describes the bias. This value

can be estimated by using the same procedure EstimateThresholdPosition.

After we obtain these two weights, the probability of an example ei to be negative and positive

can be calculated as:

() () ()Pr(' ') / ()

Pr(' ') 1 Pr(' ')

i i i
P P Ni

i i

y n w n w n w

y y
+ + −

 = + = +

= − = − = +

The estimated class of this example is the one with the larger probability.

5.2.10 GTIC (unpublished)

GTIC is proposed by the authors of CEKA. Consider ei with a noisy label set il

. il

 consists of

labels belonging to classes c1 to cK, in which ck occurs Nk times (i.e.
1

()J
k ij kj

N l c
=

= =∑ I). We denote

the probability of this example being a member of class k by a parameter θk. Then we have:

CEKA 1.0 Programing Guide

31

1 2
1

[, ,...,], where 0 1, 1
K

K k k
k

θ θ θ θ θ
=

= ≤ ≤ =∑θ

According to the MAP estimation:

1

1k k
k K

jj

N
N K

α
θ

α
=

+ −
=

+ −∑

The principle of our proposed method is based on the similarity measurement of probability

vectors θs of examples. For each example, we treat θk as its kth feature vector, and then we use a

clustering algorithm to cluster similar examples together. Examples in the same cluster belong to the

same class. In addition, we also generate the (K+1)th feature (denoted as θz) calculated by

1

1
1

1 ()
K

z k k
kK

θ θ θ
−

+
=

= −∑

After K+1 features are generated, an example i is denoted by ei=<(θ1,…, θk, θz,), y>, where (θ1,…, θk,

θz) is its feature portion used for clustering, and y is its unknown true label.

Algorithm Ground Truth Inference using Clustering (GTIC)

Input: A sample set E in which each ei has a multiple noisy label set and has no true

label, the number of class K

Output: A sample set E in which each ei has an estimated label

1. For each ei in E, use Equations 6 and 7 to generate its K+1 features, i.e.,

() () () ()
1(,..., ,)i i i i

k zθ θ θ=θ .

2. Select a K-centroid set Φ based on the θs of the examples.

3. Run the K-Means clustering algorithm with Euclidean distance by setting Φ as the

initial centroids.

4. For each cluster s sized ()sM obtained from K-Means, create a vector ()sτ whose

element ()s
kτ is calculated using

()
() ()

1

sMs i
k ki

τ θ
=

= ∑ , where 1 ≤ s ≤ K.

5. For each cluster s, based on its vector ()sτ , assign this cluster with the class

() ()arg max { }s s
k kk τ= under the constraint that a cluster is mapped to one and only

one class.

6. Assign each ei an inferred label according to the label of each cluster and return E.

CEKA 1.0 Programing Guide

32

6 Noise Handling Algorithms

6.1 Introduction

Obviously, crowdsourced data after inference still has mislabeled instances, i.e., label noise.

Therefore, it would be natural to use noise handling techniques to identify and correct this noise.

The principle behind this is that human intelligence is not always superior to machine intelligence,

especially when the labelers are not experts. For example, in the text classification tasks conducted

by Shinsel et al (2011), although each instance obtained six labels from different labelers, the overall

integrated accuracy is still less than 94%, which is significantly inferior to the performance gained by

a machine learning algorithm SVM, whose accuracy is greater than 99% (Frank and Bouckaert

2006). Thus, a potential high quality learning model may have a great opportunity to improve label

accuracy.

6.2 Noise Filtering

When handing noise, the first step is to identify noises and separate them from the original data

set, which is called noise filtering. CEKA provides an abstract class Filter to define some uniform

functions for different specific filtering algorithms.

6.2.1 Class Filter

The abstract class Filter provides the following function to filter noise.

Function

abstract void filterNoise(Dataset dataset, Classifier[]

classifier) throws Exception

Comments: (1) This function identifies the potential mislabeled instances.

(2) If this function successes, it will create two data sets called noise data set

and cleansed data set. The noise data set contains the instances that have

high probability of being mislabeled and the cleansed data set contains the

instances that probably have the correct class labels.

(3) The parameter dataset doesn’t change after the function is called.

(4) Many algorithms use one or multiple classifiers to build models for the

subsequent noise identification procedure.

Parameters Dataset dataset the data set that the function to process

CEKA 1.0 Programing Guide

33

Classifier[]

classifier

a group of classifiers that will be used in the

noise filtering procedure

Return void

After the above function has been called, we can use the following functions to get the noise

data set and the cleansed data set.

Function
Dataset getCleansedDataset()

Comments: get the cleansed data set

Return Dataset the cleansed data set

Function
Dataset getNoiseDataset()

Comments: get the noise data set

Return Dataset the noise data set

The filtering algorithms described below are all subclasses of Filter, so these three functions

work for them.

6.2.2 Classification Filtering

The class ClassificationFilter implements the classification filtering algorithm

(Gamberger et al., 1999). The main steps of the algorithm are as follows.

Algorithm Classification Filter
1. Split the data set TR using an k-fold cross validation scheme
2. For each of these k parts, a learning algorithm is trained on the other n-1 parts, resulting

in n different classifiers.
3. These n resulting classifiers are used to tag each instance in the excluded part as either

correct or mislabeled, by comparing the train label with that assigned by the classifer.
4. The misclassified examples are added to noise data set
5. Remove noisy examples from TR, the remaining examples in TR is the cleansed data

set.

When creating the object of the class ClassificationFilter, the number of the fold should

be specified through a parameter.

Function
ClassificationFilter (int nFold){

Comments: create an object of the class ClassificationFilter

parameter int nFold the number of fold

CEKA 1.0 Programing Guide

34

6.2.3 Majority Voting Filtering

The class MajorityFilter implements the classification filtering algorithm (Brodley and

Friedl, 1999). The main steps of the algorithm are as follows.

Algorithm Majority Filter
1. Split the data set TR using an k-fold cross validation scheme
2. For each of these k parts, m learning algorithms are trained on the other n-1 parts, and

the resulting m classifiers are used to tag each instance from the kth part as labeled or
mislabeled.

3. The examples that more than half of the m classifiers tagged as mislabeled are added
to the noise data set.

4. Remove noisy examples from TR, the remaining examples in TR is the cleansed data
set.

When creating an object of class MajorityFilter, the number of folds should be specified

through the parameter nFold.

Function
MajorityFilter (int nFold){

Comments: create an object of the class MajorityFilter

parameter int nFold the number of folds

6.2.4 Iterative Partitioning Filtering

The class IterativePartitionFilter implements the iterative partitioning filtering

algorithm (Khoshgoftaar and Rebours, 2007). The main steps of the algorithm are as follows.

Algorithm Iterative Partitioning Filter
1. Partition the data set TR using a k-fold cross validation scheme.
2. Train a learning algorithm on each of these k folds, resulting in k classifiers.
3. Depending upon voting scheme (majority or consensus), add each example to noise

data set for which less than half of the classifiers or less than all of the classifiers,
respectively, tag it as mislabeled.

4. Record the number of examples added to noise data set each iteration.
5. Repeat steps 1-4 until each of the last three iterations fail to add at least a specified

number of examples to the noise data set, specified by a percentage parameter.

When creating an object of class IterativePartitionFilter, the number of folds, the

voting scheme, and the percentage parameters must all be specified.

CEKA 1.0 Programing Guide

35

Function

IterativePartitionFilter (int nFold, String votingScheme,

double percentage){

Comments: create an object of the class IterativePartitionFilter

parameters

int nFold the number of folds

String votingScheme The voting scheme used

double percentage proportion of examples (see step 5)

6.2.5 Multiple Partitioning Filtering

The class MultiplePartitioningFilter implements the multiple partitioning filtering

algorithm (Khoshgoftaar and Rebours, 2007). The main steps of the algorithm are as follows.

Algorithm Multiple Partition Filter
1. Partition the data set TR using a k-fold cross validation scheme.
2. Train m learning algorithms on each of these k folds, resulting in mk classifiers.
3. Tag each example in TR as correctly labeled or mislabeled by each of the mk classifers.
4. For a specified filtering level fl, add all examples that were tagged as mislabeled at least

fl times to the noise data set.

When creating an object of class MultiplePartitioningFilter, the number of folds and

the filtering level must be specified.

Function

MultiplePartitioningFilter (int nFold, int

filteringLevel){

Comments: create an object of the class MultiplePartitioningFilter

parameters
int nFold the number of folds

int filteringLevel the filtering level

6.3 Noise Correction

6.3.1 Self-Training Correction Algorithm

The class SelfTrainCorrection implements the self-training noise correction algorithm

(Triguero et al., 2014). The main steps of the algorithm are as follows.

Algorithm Self-Training Correction
1. Train a learning algorithm on the clean data set.
2. Use the resulting classifier to obtain a probability distribution for each noisy example,

representing its likelihood of belonging to each class.

CEKA 1.0 Programing Guide

36

3. For each class, find a number of examples from the noisy data set which have the
greatest likelihood of belonging to that class, set their class value to that class, and
move it to the clean data set (the correction step).

4. Repeat steps 1-3 while there are still examples to correct.
5. Return new noisy data set and clean data set.

When creating an object of class SelfTrainCorrection, the clean data set, noisy data set,

and proportion of instances to correct must all be specified.

Function

SelfTrainCorrection (Dataset cleanExamples, Dataset

noisyExamples, double proportion){

Comments: create an object of the class SelfTrainCorrection

parameters

Dataset

cleanExamples

the clean data set, determined from a prior

noise filter execution

Dataset

noisyExamples

the noisy data set, determined from a prior

noise filter execution

double proportion the proportion of instances to correct

The class STCConfidence implements another version self-training noise correction algorithm

(Triguero et al., 2014) with a confidence level. The main steps of the algorithm are as follows.

When creating an object of class STCConfidence, the clean data set, noisy data set, and

confidence threshold must all be specified.

Function

STCConfidence (Dataset cleanExamples, Dataset

noisyExamples, double threshold){

Comments: create an object of the class STCConfidence

parameters Dataset the clean data set, determined from a prior

Algorithm STC Confidence
1. Train a learning algorithm on the clean data set.
2. Use the resulting classifier to obtain a probability distribution for each noisy example,

representing its likelihood of belonging to each class.
3. For each example that has a likelihood of belonging to a certain class that is greater

than the predefined confidence threshold value, set its class value to the likely value,
and move it to the clean data set.

4. Repeat steps 1-3 as long as there is at least one example moved to the clean data set.
5. Return new noisy data set and clean data set.

CEKA 1.0 Programing Guide

37

cleanExamples noise filter execution

Dataset

noisyExamples

the noisy data set, determined from a prior

noise filter execution

double threshold the confidence threshold

6.3.2 Polishing Labels Algorithm

The class PolishingLabels implements the label-polishing noise correction algorithm

(Nicholson, Zhang, and Sheng, preprint). The main steps of the algorithm are as follows.

When creating an object of class PolishingLabels, the learning algorithm to use must be

specified.

Function
PolishingLabels (Classifier classifier){

Comments: create an object of the class PolishingLabels

parameter Classifier classifier the learning algorithm

6.3.3 Cluster Correction Algorithm (unpublished)

The class ClusterCorrection implements its namesake noise-correction algorithm

(Nicholson, Zhang, and Sheng, unpublished). The main steps of the algorithm are as follows.

When creating an object of class ClusterCorrection, the clean data set, noisy data set, and

proportion of instances to correct must all be specified.

Algorithm Polishing Labels
1. Split the data set TR into 10 folds.
2. Train a learning algorithm on each fold, resulting in 10 classifiers.
3. Have the 10 classifiers label each example in TR.
4. For each example in TR, set its class equal to the class with the most votes from the 10

classifiers. Break ties randomly, unless the example’s original class is involved in the
tie, then do nothing.

Algorithm Cluster Correction
1. Perform a clusterings of the data set TR.
2. For each cluster in each clustering, add to each example in that cluster a set of weights

that signify its likely class value given the other examples in that cluster.
3. For each example, take the class corresponding to its maximum weight value, and

assign that class to the example.

CEKA 1.0 Programing Guide

38

Function

ClusterCorrection (Dataset dataset, String datasetPath,

Clusterer[] clusterers){

Comments: create an object of the class ClusterCorrection

parameters

Dataset dataset the training set

String datasetPath the path to the .arff file of data set

Clusterer[]

clusterers

the set of clusterers with which to cluster the

training set

6.3.4 Adaptive Voting Noise Correction (unpublished)

The package ceka.noise.avnc implements adaptive voting noise correction algorithm (Zhang et

al., unpublished). AVNC is proposed to identify and correct the most likely noisy examples with the

help of the estimated quality information of labelers provided by inference algorithms.

The following sample code illustrates how to use AVNC to correct noise after the ground truth

inference.

/*dataset is an object of class Dataset that has been inferred by an
inference algorithm*/
/*statistical info of workers*/
WorkerStat workerStat = new WorkerStat();
double estimatedMeanProb =

workerStat.calculateEstimatedMeanAcc(dataset);
double integratedCorrectProb =

Stochastics.binomialIntegration(numberOfLabeler,
estimatedMeanProb);

int nFold = 10;
int nModel = 5;
AdaptiveClassificationFilter acf

= new AdaptiveClassificationFilter(nFold, nModel);
acf.setMinEstimatedNoiseProportion(1 - integratedCorrectProb);
acf.setMaxEstimatedNoiseProportion(1 - estimatedMeanProb);
/*filtering noise*/
acf.filterNoise(dataset, classifier);
Dataset cleansedSet = noiseFilter.getCleansedDataset();
Dataset noiseData = noiseFilter.getNoiseDataset();
Dataset [] highDatasets = acf.getHighQualityDatasets();

CEKA 1.0 Programing Guide

39

Classifier [] classifiers = new Classifier[highDatasets.length];
/* use SMO classifier */
for (int i = 0; i < classifiers.length; i++) {
 Class<?> m_class = Class.forName("weka.classifiers.functions.SMO");
 classifiers[i] = (Classifier) m_class.newInstance();
 ((SMO)classifiers[i]).setKernel(new NormalizedPolyKernel());
}
/*correction*/
VoteCorrection corrector = new VoteCorrection();
corrector.correct(noiseData, highDatasets, classifiers, (int)
(highDatasets.length * 0.5));
/*performance evaluation*/
for (int i = 0; i < noiseData.getExampleSize(); i++)
 cleansedSet.addExample(noiseData.getExampleByIndex(i));
PerformanceStatistic perfStat = new PerformanceStatistic();
perfStat.stat(cleansedSet);

CEKA 1.0 Programing Guide

40

7 Evaluation and Simulation

7.1 Performance Measures

The class PerformanceStatistic can be applied to a data set to get the performance

measures. The statistics of the performance can be processed by the following function.

Function

void stat(Dataset dataset)

Comments: after a dataset has been processed by an algorithm, this function

is used for calculating the performance statistic information

Parameter Dataset dataset the data set that the function to process

Return void

After above function is called, we can get the metrics such as accuracy, recall, precision, F

score, AUC and multi-class AUC through their corresponding “getXXX()” functions.

Example: the following sample code shows an entire inference procedure with the performance

evaluation.

7.2 Package ceka.simulation

Research in crowdsourcing is not always conducted on real-world datasets. Sometimes, we

need to simulate the behaviors of labelers or generate a sub data set from an entire one. The

package ceka.simulation provides some simple classes to do these tasks.

/*dataset is an object of class Dataset*/
/*use MV to infer the integrated label*/
MajorityVote mv = new MajorityVote();
mv.doInference(dataset);}
/*get the performance */
PerformanceStatistic reporter = new PerformanceStatistic();
reporter.stat(dataset);
System.out.println("PLAT accuracy: " + reporter.getAccuracy() + " Roc
Area: " + reporter.getAUC() + " Recall: " + reporter.getRecallBinary()
+ " Precision: " + reporter.getPresicionBinary()+ " F1:" +
reporter.getF1MeasureBinary());

CEKA 1.0 Programing Guide

41

7.2.1 Class ExampleMask

The class ExampleMask is used for selecting the examples to be saved to files. It provides the

following functions.

Function

void intialize(Dataset data)

Comments: initialize the mask with a data set. All examples in the data set

will be selected (active).

Parameter Dataset dataset the data set that the function processes

Return void

Function

void disableExample (String exampleId)

Comments: disable an example through ID. The example will not be selected

(inactive).

Parameter String exampleId the ID of the example to be inactive

Return void

Function

void enableExample (String exampleId)

Comments: enable an example through ID. The example will be selected

(active).

Parameter String exampleId the ID of the example to be active

Return void

Function
boolean isActiveExample(String exampleId)

Comments: query the status of an example

Parameter String exampleId the ID of the example to query

Return boolean status

7.2.2 Class ExampleWorkersMask

The class ExampleWorkersMask is used for selecting noisy labels of each example to be

saved to files (supposing each worker at most provides one label for each instance). It provides the

following functions.

CEKA 1.0 Programing Guide

42

Function

void intialize(Dataset data)

Comments: initialize the mask with a data set. All workers of each example in

the data set will be selected (active).

Parameter Dataset dataset the data set that the function processes

Return void

Function
ArrayList<String> getWorkerMask(String exampleId)

Comments: get the worker mask of an example.

Parameter String exampleId the ID of the example to query

Return ArrayList<String> the IDs of the active workers of this example

Function

void sequentialSelect(int numberOfLabels)

Comments: consecutively select N labels. For example, if N=3, then select

the first 3 labels from the multiple noisy label set of this example.

Parameter int numberOfLabels the number of consecutive labels to select

Return void

Function

void randSelect(int numberOfLabels)

Comments: randomly select N labels. For example, if N=3, then randomly

select the first 3 labels from the multiple noisy label set of this example

Parameter int numberOfLabels the number of labels to be selected

Return boolean status

Example: the following sample code shows how to use a basic data set to generate a new data set

with the help of mask.

CEKA 1.0 Programing Guide

43

Thus, we can use classes ExampleMask and ExampleWorkersMask to create new sub data

sets with the help of the disk files.

7.2.3 Simulation of workers

CEKA provides simple functions to simulate workers. The simulation can be conducted via

classes GaussianLabelingStrategy, SingleQualLabelingStrategy and MockWorker.

Class GaussianLabelingStrategy simulates the labeling quality of each worker that is similar to

a Guassian distribution with the parameters (mean, std. deviation). The labeling quality provided by

this class is in the range of [mean - std. devation, mean + std.deviation].

SingleQualLabelingStrategy simulates the labeling quality of each worker with a uniform

probability. MockWorker is a subclass of the class Worker. Classes

GaussianLabelingStrategy and SingleQualLabelingStrategy apply to the class

MockWorker to generate the object with desired labeling quality. GaussianLabelingStrategy

and SingleQualLabelingStrategy are inherited from the abstract class LabelingStrategy

which provides the following functions for generating simulated workers and labeling instances.

Function
void assignWorkerQuality(MockWorker [] workers)

Comments: assign labeling quality to a set of workers

Parameter
MockWorker [] workers a set of workers to whom to assign labeling

qualities

/*dataset is an object of class Dataset, the original data set*/
/*suppose the number of labels of each instance is greater than 10*/
/*randomly select 1-10 labels for each instance to create
 new sub data set*/
String prefix = “E:\\Ceka\\dataset\myDataName”;
for (int numLabels = 1; numLabels < 10 numLabels++) {
 ExampleWorkersMask mask = new ExampleWorkersMask();
 mask.initialize(dataset);
 mask.randSelect(numLabels);
 String numStr = new Integer(numLabels).toString();
 String subResponsePath = prefix + numStr + ".response.txt";
 String subArffxPath = prefix + numStr + ".arffx";
 FileSaver.saveDatasetResponseArffx(dataset, subResponsePath, null,
subArffxPath, mask);
 /* load new sub data set*/
 Dataset subDataset = FileLoader.loadFileX(subResponsePath, null,
subArffxPath);
}

CEKA 1.0 Programing Guide

44

Return void

Function

void labelDataset(Dataset dataset, MockWorker worker)

Comments: simulate a worker to label the entire dataset, which means each

instance will get a label from this worker.

Parameter
Dataset dataset the data set to be labeled

MockWorker worker the worker who labels the data set

Return void

Example: the following sample code shows how to simulate multiple workers labeling a data set.

/*dataset is an object of class Dataset*/
/*MAX_WKR is the maximum number of workers*/
double meanQ = 0.7;
double stdQ = 0.1;
MockWorker [] mockWorkers = new MockWorker[MAX_WKR];
GaussianLabelingStrategy strategy

= new GaussianLabelingStrategy(meanQ, stdQ);
for (int j = 0; j < MAX_WKR; j++) {
 mockWorkers[j] = new MockWorker(new Integer(j).toString());
}
strategy.assignWorkerQuality(mockWorkers);
for (int j = 0 ; j < MAX_WKR; j++) {
 /*do labeling*/
 mockWorkers[j].labeling(trainSet, strategy);
}

CEKA 1.0 Programing Guide

45

8 References

Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. Journal of Artificial

Intelligence Research, 11:131–161, 1999.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates

using the em algorithm. Applied statistics, pages 20–28, 1979.

Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudr´e-Mauroux. Zencrowd: leveraging

probabilistic reasoning and crowdsourcing techniques for large-scale entity link-ing. In World

Wide Web, pages 469–478. ACM, 2012.

Eibe Frank and Remco R Bouckaert. Naive bayes for text classication with unbalanced classes. In

Knowledge Discovery in Databases: PKDD 2006, pages 503–510. Springer, 2006.

Dragan Gamberger, Nada Lavrac, and Ciril Groselj. Experiments with noise .filtering in a medical

domain. In ICML, pages 143–151, 1999.

Mark Hall, Eibe Frank, Geo.rey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.

The weka data mining software: an update. ACM SIGKDD explorations newsletter,

11(1):10–18, 2009.

Je. Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowd-sourcing

systems. In NIPS, pages 1953–1961, 2011.

Taghi M Khoshgoftaar and Pierre Rebours. Improving software quality prediction by noise .filtering

techniques. Journal of Computer Science and Technology, 22(3):387–396, 2007.

Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Ngoc Tran Lam, and Karl Aberer. Batc: a benchmark

for aggregation techniques in crowdsourcing. In ACM SIGIR, pages 1079– 1080. ACM, 2013.

Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca

Bogoni, and Linda Moy. Learning from crowds. The Journal of Machine Learning Research,

11:1297–1322, 2010.

Aashish Sheshadri and Matthew Lease. Square: A benchmark for research on computing crowd

consensus. In First AAAI Conference on Human Computation and Crowdsourcing, 2013.

CEKA 1.0 Programing Guide

46

Amber Shinsel, Todd Kulesza, Margaret Burnett, William Curran, Alex Groce, Simone Stumpf, and

Weng-Keen Wong. Mini-crowdsourcing end-user assessment of intelligent assistants: A

cost-benet study. In Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE

Symposium on, pages 47–54. IEEE, 2011.

Isaac Triguero, Jos´e A S´aez, Juli´an Luengo, Salvador Garc´ia, and Francisco Herrera. On the

characterization of noise .lters for self-training semi-supervised in nearest neighbor

classification. Neurocomputing, 132:30–41, 2014.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L Ruvolo. Whose vote

should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS,

pages 2035–2043, 2009.

Jing Zhang, Xindong Wu, and Victor S Sheng. Imbalanced multiple noisy labeling. IEEE Transaction

on Knowledge and Data Engineering, preprint.

	1 System Overview
	1.1 Introduction
	1.2 System Architecture

	2 Deploy with Eclipse
	2.1 Install Eclipse
	2.2 Install and Configure CEKA
	2.3 Cooperation with the Source Code of WEKA
	2.4 Set up Your Own Project Based on CEKA
	2.5 Overview of the Packages in CEKA

	3 Input File Formats
	3.1 Input Files
	3.1.1 File “.gold.txt”
	3.1.2 File “.response.txt”
	3.1.3 File “.arff”
	3.1.4 File “.arffx”

	3.2 File Loading
	3.3 File Saving

	4 Core Classes
	4.1 Overview
	4.1.1 Hierarchical structure of core classes
	4.1.2 Brief descriptions of core classes

	4.2 Class Dataset
	4.2.1 Create an empty data set
	4.2.2 Manipulation of the instances in a data set.
	4.2.3 Other functions
	4.2.4 Compatible with WEKA

	4.3 Class Example
	4.3.1 Create examples
	4.3.2 Manipulation of different kinds of labels
	4.3.3 Cooperation with WEKA

	4.4 Classes MultiNoisyLabelSet and Label
	4.4.1 Class MultiNoisyLabelSet
	4.4.2 Class Label

	4.5 Class Worker

	5 Inference Algorithms
	5.1 Common Function
	5.2 Details of the Inference Algorithms
	5.2.1 Definitions
	5.2.2 Majority Voting
	5.2.3 Dawid & Skene’s
	5.2.4 GLAD
	5.2.5 Raykar, Yu, et al. (RY)
	5.2.6 ZenCrowd
	5.2.7 KOS
	5.2.8 PLAT
	5.2.9 Adaptive Weighted Majority Voting (unpublished)
	5.2.10 GTIC (unpublished)

	6 Noise Handling Algorithms
	6.1 Introduction
	6.2 Noise Filtering
	6.2.1 Class Filter
	6.2.2 Classification Filtering
	6.2.3 Majority Voting Filtering
	6.2.4 Iterative Partitioning Filtering
	6.2.5 Multiple Partitioning Filtering

	6.3 Noise Correction
	6.3.1 Self-Training Correction Algorithm
	6.3.2 Polishing Labels Algorithm
	6.3.3 Cluster Correction Algorithm (unpublished)
	6.3.4 Adaptive Voting Noise Correction (unpublished)

	7 Evaluation and Simulation
	7.1 Performance Measures
	7.2 Package ceka.simulation
	7.2.1 Class ExampleMask
	7.2.2 Class ExampleWorkersMask
	7.2.3 Simulation of workers

	8 References

